Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Anal Chem ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698557

RESUMO

A fully automated online enrichment and separation system for intact glycopeptides, named AutoGP, was developed in this study by integrating three different columns in a nano-LC system. Specifically, the peptide mixture from the enzymatic digestion of a complex biological sample was first loaded on a hydrophilic interaction chromatography (HILIC) column. The nonglycopeptides in the sample were washed off the column, and the glycopeptides retained by the HILIC column were eluted to a C18 trap column to achieve an automated glycopeptide enrichment. The enriched glycopeptides were further eluted to a C18 column for separation, and the separated glycopeptides were eventually analyzed by using an orbitrap mass spectrometer (MS). The optimal operating conditions for AutoGP were systemically studied, and the performance of the fully optimized AutoGP was compared with a conventional manual system used for glycopeptide analysis. The experimental evaluation shows that the total number of glycopeptides identified is at least 1.5-fold higher, and the median coefficient of variation for the analyses is at least 50% lower by using AutoGP, as compared to the results acquired by using the manual system. In addition, AutoGP can perform effective analysis even with a 1-µg sample amount, while a 10-µg sample at least will be needed by the manual system, implying an order of magnitude better sensitivity of AutoGP. All the experimental results have consistently proven that AutoGP can be used for much better characterization of intact glycopeptides.

2.
Rapid Commun Mass Spectrom ; 38(13): e9752, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700125

RESUMO

RATIONALE: Gas chromatography-mass spectrometry (GC-MS) combines chromatography and MS, providing full play to the advantages of high separation efficiency of GC, strong qualitative ability of MS, and high sensitivity of detector. In GC-MS data processing, determining the experimental compounds is one of the most important analytical steps, which is usually realized by one-to-one similarity calculations between the experimental mass spectrum and the standard mass spectrum library. Although the accuracy of the algorithm has been improved in recent years, it is still difficult to distinguish structurally similar mass spectra, especially isomers. At the same time, the library capacity is very large and increasing every year, and the algorithm needs to perform large numbers of calculations with irrelevant compounds in the library to recognize unknown compounds, which leads to a significant reduction in efficiency. METHODS: This work proposed to exclude a large number of irrelevant mass spectra by presearching, perform preliminary similarity calculations using similarity algorithms, and finally improve the accuracy of similarity calculations using deep classification models. The replica library of NIST17 is used as the query data, and the master library is used as the reference database. RESULTS: Compared with the traditional recognition algorithm, the preprocessing algorithm has reduced the time by 4.2 h, and by adding the deep learning models 1 and 2 as the final determination, the recognition accuracy has been improved by 1.9% and 6.5%, respectively, based on the original algorithm. CONCLUSIONS: This method improves the recognition efficiency compared to conventional algorithms and at the same time has better recognition accuracy for structurally similar mass spectra and isomers.

3.
Anal Chem ; 96(17): 6674-6682, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38642044

RESUMO

Photodynamic therapy (PDT) is a significant noninvasive therapeutic modality, but it is often limited in its application due to the restricted tissue penetration depth caused by the wavelength limitations of the light source. Two-photon (TP) fluorescence techniques are capable of having an excitation wavelength in the NIR region by absorbing two NIR photons simultaneously, which offers the potential to achieve higher spatial resolution for deep tissue imaging. Thus, the adoption of TP fluorescence techniques affords several discernible benefits for photodynamic therapy. Organic TP dyes possess a high fluorescence quantum yield. However, the biocompatibility of organic TP dyes is poor, and the method of coating organic TP dyes with silica can effectively overcome the limitations. Herein, based on the TP silica nanoparticles, a functionalized intelligent biogenic missile TP-SiNPs-G4(TMPyP4)-dsDNA(DOX)-Aptamer (TGTDDA) was developed for effective TP bioimaging and synergistic targeted photodynamic therapy and chemotherapy in tumors. First, the Sgc8 aptamer was used to target the PTK7 receptor on the surface of tumor cells. Under two-photon light irradiation, the intelligent biogenic missile can be activated for TP fluorescence imaging to identify tumor cells and the photosensitizer assembled on the nanoparticle surface can be activated for photodynamic therapy. Additionally, this intelligent biogenic missile enables the controlled release of doxorubicin (DOX). The innovative strategy substantially enhances the targeted therapeutic effectiveness of cancer cells. The intelligent biogenic missile provides an effective method for the early detection and treatment of tumors, which has a good application prospect in the real-time high-sensitivity diagnosis and treatment of tumors.


Assuntos
Imagem Óptica , Fotoquimioterapia , Fótons , Fármacos Fotossensibilizantes , Humanos , Animais , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Camundongos , Nanopartículas/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Dióxido de Silício/química , Aptâmeros de Nucleotídeos/química , Corantes Fluorescentes/química , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico por imagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Camundongos Nus , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C
4.
Org Lett ; 26(15): 3014-3019, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38547326

RESUMO

The radical relay provides an effective paradigm for intermolecular assembly to achieve functionalization across remote chemical bonds. Herein, we report the first radical relay 1,3-carbocarbonylation of α-carbonyl alkyl bromides across two separate C═C bonds. The reaction is highly chemo- and regioselective, with two C(sp3)-C(sp3) bonds and one C═O bond formed in a single orchestrated operation. In addition, the synthesis method under mild conditions and using inexpensive copper as the catalyst allows facile access to structurally diverse 1,3-carbocarbonylation products. The plausible mechanism is investigated through a series of control experiments, including radical trapping, radical clock experiments, critical intermediate trapping, and 18O labeling experiment.

5.
Eur J Med Chem ; 270: 116347, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552428

RESUMO

The filamentous temperature-sensitive mutant Z protein (FtsZ), a key player in bacterial cell division machinery, emerges as an attractive target to tackle the plight posed by the ever growing antibiotic resistance over the world. Therefore in this regard, agents with scaffold diversities and broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens are highly needed. In this study, a new class of marine-derived fascaplysin derivatives has been designed and synthesized by Suzuki-Miyaura cross-coupling. Some compounds exhibited potent bactericidal activities against a panel of Gram-positive (MIC = 0.024-6.25 µg/mL) and Gram-negative (MIC = 1.56-12.5 µg/mL) bacteria including methicillin-resistant S. aureus (MRSA). They exerted their effects by dual action mechanism via disrupting the integrity of the bacterial cell membrane and targeting FtsZ protein. These compounds stimulated polymerization of FtsZ monomers and bundling of the polymers, and stabilized the resulting polymer network, thus leading to the dysfunction of FtsZ in cell division. In addition, these agents showed negligible hemolytic activity and low cytotoxicity to mammalian cells. The studies on docking and molecular dynamics simulations suggest that these inhibitors bind to the hydrophilic inter-domain cleft of FtsZ protein and the insights obtained in this study would facilitate the development of potential drugs with broad-spectrum bioactivities.


Assuntos
Carbolinas , Indóis , Indolizinas , Staphylococcus aureus Resistente à Meticilina , Compostos de Amônio Quaternário , Animais , Proteínas de Bactérias , Proteínas do Citoesqueleto , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Mamíferos/metabolismo
6.
Adv Sci (Weinh) ; : e2401738, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489668

RESUMO

Bioenergetic therapy is emerging as a promising therapeutic approach. However, its therapeutic effectiveness is restricted by metabolic plasticity, as tumor cells switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) to compensate for energy. Herein, Metformin (MET) and BAY-876 (BAY) co-loaded CuFe2 O4 (CF) nanoplatform (CFMB) is developed to boost energy deprivation by synchronous interventions of glycolysis and OXPHOS for bioenergetic therapy synergetic with chemodynamic/photothermal therapy (CDT/PTT). The MET can simultaneously restrain glycolysis and OXPHOS by inhibiting hexokinase 2 (HK2) activity and damaging mitochondrial function to deprive energy, respectively. Besides, BAY blocks glucose uptake by inhibiting glucose transporter 1 (GLUT1) expression, further potentiating the glycolysis repression and thus achieving much more depletion of tumorigenic energy sources. Interestingly, the upregulated antioxidant glutathione (GSH) in cancer cells triggers CFMB degradation to release Cu+ /Fe2+ catalyzing tumor-overexpressed H2 O2 to hydroxyl radical (∙OH), both impairing OXPHOS and achieving GSH-depletion amplified CDT. Furthermore, upon near-infrared (NIR) light irradiation, CFMB has a photothermal conversion capacity to kill cancer cells for PTT and improve ∙OH production for enhanced CDT. In vivo experiments have manifested that CFMB remarkably suppressed tumor growth in mice without systemic toxicity. This study provides a new therapeutic modality paradigm to boost bioenergetic-related therapies.

7.
Rapid Commun Mass Spectrom ; 38(6): e9700, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38356089

RESUMO

RATIONALE: Ion mobility spectrometry (IMS), as a promising analytical tool, has been widely employed in the structural characterization of biomolecules. Nevertheless, the inherent limitation in the structural resolution of IMS frequently results in peak overlap during the analysis of isomers exhibiting comparable structures. METHODS: The radial basis function (RBF) neural network optimization algorithm based on dynamic inertial weight particle swarm optimization (DIWPSO) was proposed for separating overlapping peaks in IMS. The RBF network structure and parameters were optimized using the DIWPSO algorithm. By extensively training using a large dataset, an adaptive model was developed to effectively separate overlapping peaks in IMS data. This approach successfully overcomes issues related to local optima, ensuring efficient and precise separation of overlapping peaks. RESULTS: The method's performance was evaluated using experimental validation and analysis of overlapping peaks in the IMS spectra of two sets of isomers: 3'/6'-sialyllactose; fructose-6-phosphate, glucose-1-phosphate, and glucose-6-phosphate. A comparative analysis was conducted using other algorithms, including the sparrow search algorithm, DIWPSO algorithm, and multi-objective dynamic teaching-learning-based optimization algorithm. The comparison results show that the DIWPSO-RBF algorithm achieved remarkably low maximum relative errors of only 0.42%, 0.092%, and 0.41% for ion height, mobility, and half peak width, respectively. These error rates are significantly lower than those obtained using the other three algorithms. CONCLUSIONS: The experimental results convincingly demonstrate that this method can adaptively, rapidly, and accurately separate overlapping peaks of multiple components, improving the structural resolution of IMS.

8.
J Transl Med ; 22(1): 123, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297325

RESUMO

BACKGROUND: Esophageal strictures significantly impair patient quality of life and present a therapeutic challenge, particularly due to the high recurrence post-ESD/EMR. Current treatments manage symptoms rather than addressing the disease's etiology. This review concentrates on the mechanisms of esophageal stricture formation and recurrence, seeking to highlight areas for potential therapeutic intervention. METHODS: A literature search was conducted through PUBMED using search terms: esophageal stricture, mucosal resection, submucosal dissection. Relevant articles were identified through manual review with reference lists reviewed for additional articles. RESULTS: Preclinical studies and data from animal studies suggest that the mechanisms that may lead to esophageal stricture include overdifferentiation of fibroblasts, inflammatory response that is not healed in time, impaired epithelial barrier function, and multimethod factors leading to it. Dysfunction of the epithelial barrier may be the initiating mechanism for esophageal stricture. Achieving perfect in-epithelialization by tissue-engineered fabrication of cell patches has been shown to be effective in the treatment and prevention of esophageal strictures. CONCLUSION: The development of esophageal stricture involves three stages: structural damage to the esophageal epithelial barrier (EEB), chronic inflammation, and severe fibrosis, in which dysfunction or damage to the EEB is the initiating mechanism leading to esophageal stricture. Re-epithelialization is essential for the treatment and prevention of esophageal stricture. This information will help clinicians or scientists to develop effective techniques to treat esophageal stricture in the future.


Assuntos
Neoplasias Esofágicas , Estenose Esofágica , Animais , Humanos , Estenose Esofágica/terapia , Estenose Esofágica/prevenção & controle , Esofagoscopia/efeitos adversos , Esofagoscopia/métodos , Constrição Patológica/complicações , Qualidade de Vida
9.
Talanta ; 269: 125516, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070286

RESUMO

A high-performance standalone planar field asymmetric waveform ion mobility spectrometry (p-FAIMS) system with a deconvolution algorithm (two-step particle swarm optimization algorithm, TSPSO) for overlapping peaks was developed to effectively detect chemical warfare agents (CWAs). Four CWA simulants were applied in this study to systemically evaluate the performance of the standalone p-FAIMS system. The experimental results showed that each CWA simulant in the mixture can be positively identified by carefully comparing the compensation voltage (CV) value of each peak in the FAIMS spectra for the mixture to the ones in the spectra acquired by using the same FAIMS system for the pure CWA simulant standards. The FAIMS spectrum of the CWA simulant mixture might consist of multiple overlapping peaks, which would be difficult to accurately determine the CV value for each CWA simulant peak. This problem has been effectively resolved in this study by deconvoluting the overlapping peaks via the TSPSO algorithm. As the effective peak deconvolution via TSPSO requires the degree of overlap between each FAIMS peak to be lower than a specific value, the flow rate of FAIMS carrier gas was decreased to further improve the resolution of the p-FAIMS system. After the accurate deconvolution, the resolution of original FAIMS spectrum can also be enhanced to achieve baseline separation by using TSPSO algorithm to narrow the peak width of each peak. The experimental results in this study demonstrated the possibility of using TSPSO algorithm to achieve high-resolution on a typically low-resolution standalone FAIMS. The concept in this study can potentially be applied to any low-resolution instruments to achieve high-resolution results.

10.
Analyst ; 149(3): 807-814, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38116839

RESUMO

The discovery of reliable biomarkers is essential for early diagnosis, treatment, and prognosis assessment of diseases. Many research studies have shown that circRNA is a potential biomarker for diagnosis and prognosis of diseases. However, in situ monitoring circRNA in live cells is still a challenge at present, which brings a major limitation to the development and verification of circRNA as a disease biomarker. In this study, a catalytic hairpin assembly (CHA) reaction-based DNA octahedral amplifier (DOA) was developed for fluorescence resonance energy transfer (FRET) detection and bioimaging of circRNA in living cells. The DOA was first produced by self-assembling a DNA octahedron with six customized single-stranded DNAs, and two hairpins H1 (Cy3) and H2 (Cy5) were then hybridized to four vertices of the DNA octahedron. Idiopathic pulmonary fibrosis (IPF)-related circHIPK3 was used as the target. Once the CHA reaction from H1 and H2 on DOA was activated by a sequence-specific back-splice junction (BSJ) of circHIPK3, a significant FRET signal can be obtained from Cy3 to Cy5. The circHIPK3 was subsequently released to cause the next CHA reaction. Because the DOA has the advantages of the spatial-confinement effect, resistance to nuclease degradation and easy penetration into cells, rapid and excellent signal amplification FRET detection and bioimaging of endogenous circHIPK3 can be achieved in various cells. This study provides a high-precision assay platform to explore the possibility of using circRNA as a biomarker, and it is valuable for circRNA-related early diagnosis and treatment of diseases.


Assuntos
Técnicas Biossensoriais , Carbocianinas , MicroRNAs , MicroRNAs/genética , RNA Circular/genética , DNA/genética , Biomarcadores , Técnicas Biossensoriais/métodos , Limite de Detecção
11.
Adv Sci (Weinh) ; 11(10): e2307746, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145346

RESUMO

Electrical stimulation (ES) is proposed as a therapeutic solution for managing chronic wounds. However, its widespread clinical adoption is limited by the requirement of additional extracorporeal devices to power ES-based wound dressings. In this study, a novel sandwich-structured photovoltaic microcurrent hydrogel dressing (PMH dressing) is designed for treating diabetic wounds. This innovative dressing comprises flexible organic photovoltaic (OPV) cells, a flexible micro-electro-mechanical systems (MEMS) electrode, and a multifunctional hydrogel serving as an electrode-tissue interface. The PMH dressing is engineered to administer ES, mimicking the physiological injury current occurring naturally in wounds when exposed to light; thus, facilitating wound healing. In vitro experiments are performed to validate the PMH dressing's exceptional biocompatibility and robust antibacterial properties. In vivo experiments and proteomic analysis reveal that the proposed PMH dressing significantly accelerates the healing of infected diabetic wounds by enhancing extracellular matrix regeneration, eliminating bacteria, regulating inflammatory responses, and modulating vascular functions. Therefore, the PMH dressing is a potent, versatile, and effective solution for diabetic wound care, paving the way for advancements in wireless ES wound dressings.


Assuntos
Diabetes Mellitus , Hidrogéis , Humanos , Biomimética , Proteômica , Cicatrização , Bandagens
12.
Analyst ; 149(4): 1090-1101, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38131340

RESUMO

N- and O-glycosylation modifications of proteins are closely linked to the onset and development of many diseases and have gained widespread attention as potential targets for therapy and diagnosis. However, the low abundance and low ionization efficiency of glycopeptides as well as the high heterogeneity make glycosylation analysis challenging. Here, an enrichment strategy, using Knoevenagel copolymers modified with polydopamine-adenosine (denoted as PDA-ADE@KCP), was firstly proposed for simultaneous enrichment of N- and O-glycopeptides through the synergistic effects of hydrophilic and electrostatic interactions. The adjustable charged surface and hydrophilic properties endow the material with the capability to achieve effective enrichment of intact N- and O-glycopeptides. The experimental results exhibited excellent selectivity (1 : 5000) and sensitivity (0.1 fmol µL-1) of the prepared material for N-glycopeptides from standard protein digest samples. Moreover, it was further applied to simultaneous capturing of N- and O-glycopeptides from mouse liver protein digests. Compared to the commercially available zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) material, the number of glycoproteins corresponding to all N- and O-glycopeptides enriched with PDA-ADE@KCP was much more than that with ZIC-HILIC. Furthermore, PDA-ADE@KCP captured more O-glycopeptides than ZIC-HILIC, revealing its superior performance in O-glycopeptide enrichment. All these results indicated that the strategy holds immense potential in characterizing N- and O-intact glycopeptides in the field of proteomics.


Assuntos
Glicopeptídeos , Glicoproteínas , Animais , Camundongos , Glicopeptídeos/química , Eletricidade Estática , Cromatografia Líquida , Interações Hidrofóbicas e Hidrofílicas
13.
Analyst ; 148(21): 5514-5524, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37791632

RESUMO

Despite the popularity of ion mobility spectrometry (IMS) for glycan analysis, its limited structural resolution hinders the effective separation of many glycan isomers. This leads to the overlap of IMS peaks, consequently impacting the accurate identification of glycan compositions. To this end, an improved algorithm, namely second-order differentiation combined with a simulated annealing particle swarm optimization algorithm based on sine adaptive weights (DWSA-PSO), was proposed for the separation of overlapping IMS peaks formed by glycan isomers. DWSA-PSO first performed second-order differentiation to automatically determine the number of components in overlapping peaks and exclude impossible single-peak combinations. It then introduced sinusoidal adaptive weights and a simulated annealing mechanism to improve the algorithm's search capability and global optimization performance, thereby enabling accurate and efficient separation of individual peaks. To evaluate the performance of DWSA-PSO and its application to the separation of glycan isomers, multiple sets of overlapping peaks with different degrees of overlap were simulated, and various types of multi-component overlapping peaks were formed using six disaccharide and four trisaccharide isomers. The experimental results consistently demonstrated that the DWSA-PSO algorithm outperformed both the improved particle swarm optimization (IPSO) algorithm and the dynamic inertia weight particle swarm optimization (DIWPSO) algorithm in terms of separation accuracy, running time, and fitness values. In addition, the DWSA-PSO algorithm was successfully applied to the separation of glycan isomers in malt milk beverage. All these results reveal the capability of the DWSA-PSO algorithm to facilitate the accurate identification of glycan isomers.

14.
Analyst ; 148(23): 5963-5971, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37867382

RESUMO

Rapid, simultaneous, and sensitive detection of biomolecules has important application prospects in disease diagnosis and biomedical research. However, because the content of intracellular endogenous target biomolecules is usually very low, traditional detection methods can't be used for effective detection and imaging, and to enhance the detection sensitivity, signal amplification strategies are frequently required. The hybridization chain reaction (HCR) has been used to detect many disease biomarkers because of its simple operation, good reproducibility, and no enzyme involvement. Although HCR signal amplification methods have been employed to detect and image intracellular biomolecules, there are still false positive signals. Therefore, a target-triggered enzyme-free amplification system (GHCR system) was developed, as a fluorescent AND-gated sensing platform for intracellular target probing. The false positive signals can be well avoided and the accuracy of detection and imaging can be improved by using the design of the AND gate. Two cancer markers, GSH and miR-1246, were used as two orthogonal inputs for the AND gated probe. The AND-gated probe only works when GSH and miR-1246 are the inputs at the same time, and FRET signals can be the output. In addition to the use of AND-gated imaging, FRET-based high-precision ratiometric fluorescence imaging was employed. FRET-based ratiometric fluorescent probes have a higher ability to resist interference from the intracellular environment, they can avoid false positive signals well, and they are expected to have good specificity. Due to the advantages of HCR, AND-gated, and FRET fluorescent probes, the GHCR system exhibited highly efficient AND-gated FRET bioimaging for intracellular endogenous miRNAs with a lower detection limit of 18 pM, which benefits the applications of ratiometric intracellular biosensing and bioimaging and offers a novel concept for advancing the diagnosis and therapeutic strategies in the field of cancer.


Assuntos
Pesquisa Biomédica , MicroRNAs , Neoplasias , Humanos , Corantes Fluorescentes , Reprodutibilidade dos Testes , MicroRNAs/genética , Neoplasias/diagnóstico por imagem
15.
Anal Chem ; 95(40): 14925-14933, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37769239

RESUMO

Bioimaging is widely used in various fields of modern medicine. Fluorescence imaging has the advantages of high sensitivity, high selectivity, noninvasiveness, in situ imaging, and so on. However, one-photon (OP) fluorescence imaging has problems, such as low tissue penetration depth and low spatiotemporal resolution. These disadvantages can be solved by two-photon (TP) fluorescence imaging. However, TP imaging still uses fluorescence intensity as a signal. The complexity of organisms will inevitably affect the change of fluorescence intensity, cause false-positive signals, and affect the accuracy of the results obtained. Fluorescence lifetime imaging (FLIM) is different from other kinds of fluorescence imaging, which is an intrinsic property of the material and independent of the material concentration and fluorescence intensity. FLIM can effectively avoid the fluctuation of TP imaging based on fluorescence intensity and the interference of autofluorescence. Therefore, based on silica-coated gold nanoclusters (AuNCs@SiO2) combined with nucleic acid probes, the dual-mode nanoprobe platform was constructed for TP and FLIM imaging of intracellular endogenous miRNA-21 for the first time. First, the dual-mode nanoprobe used a dual fluorescence quencher of BHQ2 and graphene oxide (GO), which has a high signal-to-noise ratio and anti-interference. Second, the dual-mode nanoprobe can detect miR-21 with high sensitivity and selectivity in vitro, with a detection limit of 0.91 nM. Finally, the dual-mode nanoprobes performed satisfactory TP fluorescence imaging (330.0 µm penetration depth) and FLIM (τave = 50.0 ns) of endogenous miR-21 in living cells and tissues. The dual-mode platforms have promising applications in miRNA-based early detection and therapy and hold much promise for improving clinical efficacy.

16.
Int J Biol Macromol ; 253(Pt 2): 126818, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37690635

RESUMO

Glycosylation is an important proteins post-translational modification and is involved in protein folding, stability and enzymatic activity, which plays a crucial role in regulating protein function in plants. Here, we report for the first time on the changes of N-glycoproteome in wheat response to wheat yellow mosaic virus (WYMV) infection. Quantitative analyses of N-linked glycoproteome were performed in wheat without and with WYMV infection by ZIC-HILIC enrichment method combined with LC-MS/MS. Altogether 1160 N-glycopeptides and 971 N-glycosylated sites corresponding to 734 N-glycoproteins were identified, of which 64 N-glycopeptides and 64 N-glycosylated sites in 60 N-glycoproteins were significantly differentially expressed. Two conserved typical N-glycosylation motifs N-X-T and N-X-S and a nontypical motifs N-X-C were enriched in wheat. Gene Ontology analysis showed that most differentially expressed proteins were mainly enriched in metabolic process, catalytic activity and response to stress. Kyoto Encyclopedia of Genes and Genomes analysis indicated that two significantly changed glycoproteins were specifically related to plant-pathogen interaction. Furthermore, we found that over-expression of TaCERK reduced WYMV accumulation. Glycosylation site mutation further suggested that N-glycosylation of TaCERK could regulate wheat resistance to WYMV. This study provides a new insight for the regulation of protein N-glycosylation in defense response of plant.


Assuntos
Vírus do Mosaico , Triticum , Triticum/genética , Triticum/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteoma/metabolismo , Glicopeptídeos/metabolismo
17.
Rapid Commun Mass Spectrom ; 37(18): e9603, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37580846

RESUMO

RATIONALE: In the field of separation science, ion mobility spectrometry (IMS) plays an important role as an analytical tool. However, the lack of sufficient structural resolution is a common problem in qualitative and quantitative analysis using IMS. A method is needed to solve the problem of overlapping peaks caused by insufficient resolution. METHODS: The method uses multiple strategies to more effectively use population information to balance exploration and exploitation capabilities, prevent local optimization, accurately resolve overlapping peaks, quickly obtain optimal spectral peak model coefficients, and accurately identify compounds. RESULTS: Multistrategy JAYA algorithm's (MSJAYA) performance is compared with improved particle swarm optimization (IPSO), dynamic inertia weight particle swarm optimization (DIWPSO), and multiobjective dynamic teaching-learning-based optimization (MDTLBO). The analysis shows that MSJAYA's maximum separation error is within 0.6%, a level of accuracy not guaranteed by the other algorithms. In addition, the separation error fluctuates within a much smaller range, demonstrating MSJAYA's superior robustness. CONCLUSIONS: Compared with other overlapping peak separation algorithms, MSJAYA is more applicable because no special parameters are used. The method allows fast deconvolution analysis of strong overlapping peaks with multiple components, which greatly improves the resolution of IMS.

18.
Chem Commun (Camb) ; 59(42): 6391-6394, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37157973

RESUMO

A novel 5-exo-dig/6-endo-trig bicyclization of 1,6-enynes with sulfonyl hydrazides in the aqueous phase using the cheap and available tetrabutylammonium iodide (TBAI)-tert-butyl hydroperoxide (TBHP) combined system is reported. The resulting reaction of diverse nitrogen- and oxygen-polyheterocycles displays high chemical selectivity, high step-economy, and a moderate substrate scope. Moreover, iodosulfonylation can be realized by modulating the structure of the 1,6-enynes.

19.
Talanta ; 260: 124621, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37149942

RESUMO

A detailed experimental characterization on the ion storage biases in an ion funnel trap, related to ion structure, charge state and RF voltage applied to the ion funnel trap, is reported by using both cytochrome C and ubiquitin samples. It was first observed experimentally that an unavoidable ion overflow would occur when the incoming ions exceeded the capacity of ion funnel trap. The conformers with extended structures would lose preferentially in the ion overflow process. Accordingly, a significant structural bias in the ion mobility spectrometry/time of flight mass spectrometry (IMS-TOF MS) spectrum was created, as the peak intensities for conformers with compact structures and extended structures would continuously increase and decrease, respectively, when the ion overflow time of the ion funnel trap was increased. Furthermore, the experimental results also showed that the effect of this ion structural bias was more significant when the RF voltage applied to the ion funnel trap was increased. In addition, an ion charge state bias in the ion funnel trap was also observed. The effect of the ion structural bias depends significantly on the specific charge state of the ions. For a given analyte, its lower charge state ions show a greater sensitivity to the ion structural bias than the higher charge state ones under the same ion funnel trap operating conditions. Therefore, it is extremely important to set a reasonable operation condition for the ion funnel trap to avoid ion storage biases in IMS-TOF MS.

20.
Eur J Med Chem ; 254: 115348, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37060755

RESUMO

The increase in antibiotic resistance has made it particularly urgent to develop new antibiotics with novel antibacterial mechanisms. Inhibition of bacterial cell division by disrupting filamentous temperature-sensitive mutant Z (FtsZ) function is an effective and promising approach. A series of novel fascaplysin derivatives with tunable hydrophobicity were designed and synthesized here. The in vitro bioactivity assessment revealed that these compounds could inhibit the tested Gram-positive bacteria including methicillin-resistant S. aureus (MRSA) (MIC = 0.049-25 µg/mL), B. subtilis (MIC = 0.024-12.5 µg/mL) and S. pneumoniae (MIC = 0.049-50 µg/mL). Among them, compounds B3 (MIC = 0.098 µg/mL), B6 (MIC = 0.098 µg/mL), B8 (MIC = 0.049 µg/mL) and B16 (MIC = 0.098 µg/mL) showed the best bactericidal activities against MRSA and no significant tendency to trigger bacterial resistance as well as rapid bactericidal properties. The cell surface integrity of bacteria was significantly disrupted by hydrophobic tails of fascaplysin derivatives. Further studies revealed that these highly active amphiphilic compounds showed low hemolytic activity and cytotoxicity to mammalian cells. Preliminary mechanistic exploration suggests that B3, B6, B8 and B16 are potent FtsZ inhibitors to promote FtsZ polymerization and inhibit GTPase activity of FtsZ, leading to the death of bacterial cells by inhibiting bacterial division. Molecular docking simulations and structure-activity relationship (SAR) study reveal that appropriate increase in the hydrophobicity of fascaplysin derivatives and the addition of additional hydrogen bonds facilitated their binding to FtsZ proteins. These amphiphilic fascaplysin derivatives could serve as a novel class of FtsZ inhibitors, which not only gives new prospects for the application of compounds containing this skeleton but also provides new ideas for the discovery of new antibiotics.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Animais , Estrutura Molecular , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Antibacterianos/química , Proteínas de Bactérias , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA